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Abstract

Social behavior varies across both individuals and species. Research to explain this

variation falls under the purview of multiple disciplines, each with its own theoretical

and empirical traditions. Integration of these disciplinary traditions is key to develop-

ing a holistic perspective. Here, we review research on the biology of social attach-

ment, a phenomena in which individuals develop strong affective connections to one

another. We provide a historical overview of research on social attachment from psy-

chological, ethological and neurobiological perspectives. As a case study, we describe

work on pair-bonding in prairie voles, a socially monogamous rodent. This specific

topic takes advantage of many biological perspectives and techniques to explain

social bonds. Lastly, we conclude with an overview of multi-dimensional conceptual

frameworks that can be used to explain social phenomena, and we propose a new

framework for research on individual variation in attachment behavior. These con-

ceptual frameworks originate from philosophy, physics, ethology, cognitive science

and neuroscience. The application and synthesis of such frameworks offers a rich

opportunity to advance understanding of social behavior and its mechanisms.

K E YWORD S
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1 | INTRODUCTION

The understanding of behavior is a daunting task. The execution of a

behavior entails a series of causal steps that begin at the level of

genomes and cells, through circuits and systems, to the dynamic modi-

fication of actions in response to a changing world. Among behaviors,

perhaps none is more complex than social behavior, with its rapidly

changing demands and its need for strategic updating based on the

behaviors of conspecifics. Social behavior is also essential to many

species, including our own. Given both its importance and its daunting

complexity, it is perhaps not surprising that a variety of disciplines

have focused on social behavior and its mechanisms, including psy-

chology, anthropology and animal behavior, to name a few. The

scientific understanding of social behavior requires synthesis of these

disparate traditions into cogent explanatory frameworks.

This review uses the study of attachment behavior as a case

study in the broader ambitions of social neuroscience. We briefly sur-

vey disciplinary traditions, levels of analysis, and prospects for future

synthesis in both human and animal models. In doing so, we follow

other authors who have emphasized the importance of multi-scale

analysis of behavior and its mechanisms.1 We add, however, that syn-

thesis across traditions offers an unusually rich opportunity for insight

and advance, as distinct disciplines bring different assumptions and

interests to bear on related questions.

The study of social attachment and its mechanisms has a uniquely

rich set of theoretical and empirical traditions. Perhaps at its simplest,
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one can focus on two traditions: that of psychology, whose primary

interest is in understanding principles of human behavior2,3; and that

of ethologists, whose interests lie in understanding the natural diver-

sity of behavior within and among animal species.4,5 There are, of

course, finer distinctions to be made—traditions in psychiatry, cogni-

tion or neuroscience, or anthropology and behavioral ecology, for

example. Each of these areas has its own unique set of assumptions,

interests and tools. Nevertheless, the principles that apply to one

must surely apply to another, and so looking across disciplines holds

tremendous promise.

One interesting example of how much these disciplines have in

common is how they have all struggled with the idea of what it means

to “explain” a behavior (Figure 1). Their answers are parallel in many

respects, and owe a debt, either explicit or implicit, to classic philoso-

phy and the origins of Western science. Aristotle suggested there

were four kinds of causes: material, formal, efficient, and final.6 The

evolutionary biologist and pioneering ethologist Julian Huxley drew

from Aristotle's insights to suggest three aspects of causation for ani-

mal behavior—mechanistic-physiological, adaptive-functional, and an

evolutionary or historical aspect.7,8 In his famous 1963 paper, Tinber-

gen reformulated Huxley's causation and added the ontogeny of

behavior as a fourth causal force.9 This led to a tidy two-by-two

framework for considering Tinbergen's four questions, in which

behavior is described at the level of causation, survival value, ontog-

eny and evolution. Indeed, this framework has proved useful for inter-

disciplinary thinking. Like Huxley and Tinbergen, the computer

scientist David Marr wondered what constitutes an explanation for

behavior. He arrived at three levels: computation, algorithm, and

implementation.10

Despite their obvious distinctions, these approaches have a vari-

ety of perspectives in common (Figure 1). Like Aristotle, they make

distinctions between immediate or material causes—the exact ways in

which matter is arranged and moved to produce a behavior—and the

principles that guide how and why behaviors are executed. The mate-

rial causes are of tremendous interest. As has been discussed else-

where, the description of immediate causes is often taken as the most

essential form of explanation in neuroscience.1 But our aspirations

should extend beyond mechanisms. Principles guide theory and

experiment, make novel predictions, and allow us to make inferences

about novel situations or species.

The principles that are sought by each of these disciplines are not

the same, but at some point they must converge. Cognitive neurosci-

ence searches for algorithms, for example, but also recognizes the

essential role of the body in shaping cognition.11 Psychologists look to

animal models to understand principles of human thought and action.

Behavioral ecologists examine neural and molecular mechanisms of

behavior and their evolution. Each of these academic silos has its own

unique insights, its own superstitions and suppositions, and yet the

principles that underlie behaviors across species must have common

threads. Humans are one example in a much larger set of outcomes.

Attachment is essential to human health and well-being.12,13 It is

also widespread in the animal world—with bonds among parents and

young, among mated pairs, among kin and nonkin—bonds that vary in

strength based on the natural history of species and the unique

demands of their lifestyles.14 They have been studied by social psy-

chologists, by primatologists, ornithologists and many more. What are

the common threads, if any? And what novel questions does a cross-

disciplinary, multi-scale perspective lead us to ask? In the first part of

this review, we synthesize research traditions on the sociobiological

basis of attachment behavior, with an emphasis on individual varia-

tion. We follow this discussion with a case study on the integrative

mechanisms that underlie pair-bonding variation in prairie voles, a

socially monogamous rodent. Then, we transition into a broader dis-

cussion of multi-dimensional frameworks and how they can provide

insights into social phenomena like attachment. We use these

established frameworks, in conjunction with our research surveys, to

inspire a new multi-dimensional framework for exploring why individ-

uals differ in attachment behavior.

2 | A BRIEF HISTORY OF RESEARCH ON
SOCIAL ATTACHMENT

A fundamental component of the human experience, and the experi-

ence of many other species, is the capacity to form an enduring emo-

tional connection, or “attachment,” with another individual. The

question of why individuals form attachments has inspired scientific

inquiry from a diverse array of disciplines for nearly a century

(Figure 2). The empirical study of social attachment has its origins in

the 1930s, when ethologist Konrad Lorenz made the seminal observa-

tion that goslings imprint on the first large moving object they

encounter.4,5 This finding was an early recognition that the drive to

form attachments emerges in early life as a biologically pre-

programmed trait. Then, in the 1950s and 60s, separate lines of

research from social psychologist John Bowlby and comparative psy-

chologist Harry Harlow converged on the conclusion that early
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attachments, like the mother–infant bond, are essential components

of healthy development.15–20

In his “attachment theory,” John Bowlby makes the argument

that human infants are predisposed to form attachments with a pri-

mary caregiver because such attachments are necessary for sur-

vival.2,3 Bowlby's theory was derived from observations of child

delinquents and hospitalized children, for which disruption of early life

attachments appeared to negatively impact their behavioral and cog-

nitive development.21 Then, Harry Harlow investigated the role of

early life attachments by experimentally manipulating early life social

exposure in rhesus macaques. In one line of work, Harlow found that

mother–infant bonds functioned as more than just a way to provide

nourishment. Infant monkeys preferred artificial doll “caregivers” cov-
ered with warm furry cloth to wire dolls that merely provided

food.18,20 In another line of work, Harlow found that early life social

exposure is key to later behavioral and cognitive functioning. Mon-

keys who were chronically isolated became catatonic and incapable of

interacting with others.19

Taken together, research by Lorenz, Bowlby and Harlow demon-

strated that humans and other species have a biological predisposition

to form social attachments, which in turn, sets the stage for healthy

behavioral and cognitive development. A limitation of these studies,

however, was that they treated social attachments as a binary vari-

able, in which attachments either did or did not occur. This limitation

fueled scientists to begin exploring social attachment as a continuous

variable that varies across individuals (Figure 2). This research focus

on individual variation was spearheaded in the 1960s by developmen-

tal psychologist Mary Ainsworth, who characterized attachment

“styles” of mother–infant bonds.22 Ainsworth found that human

infants show different patterns of exploratory and affective behaviors

during a series of situations in which an infant's mother or a stranger

was present in the same room with them.23 Based on these observa-

tions, Ainsworth theorized that infants express one of three main

attachment styles (i.e., secure, avoidant and ambivalent), which could

be attributed to variability in how attuned mothers were to their

infant's needs.24,25

With the foundation of attachment theory set by Lorenz, Bowlby,

Harlow, Ainsworth and others, modern approaches continue to tackle

a spectrum of questions about the causes and consequences of

individual variation in social attachment. Attachment is a multi-

dimensional phenomena in that research questions can span a wide

range of academic disciplines and levels of analysis. Generally, there

has been little cross-talk among these different modern approaches.

Therefore, in this review, we seek to synthesize disjointed approaches

in order to achieve an integrative understanding of why the capacity

and motivation to form social bonds varies across individuals. We

begin by surveying the general contributions made in human-focused

(e.g., social psychology) and nonhuman-focused (e.g., ethology and

comparative psychology) research at ultimate and proximate levels of

analysis. Then, we discuss research seated at the interface of these

disjoint approaches and potential opportunities for interdisciplinary

work, specifically highlighting research on pair-bonding in prairie voles

(Microtus ochrogaster). Finally, we synthesize the current state of

attachment research by structuring it onto philosophical frameworks

used to explain multi-dimensional phenomena. We use this holistic

framework to identify future research directions.

3 | VARIATION IN SOCIAL ATTACHMENT
BEHAVIOR AMONG PEOPLE

One approach to studying attachment follows in the footsteps of

Bowlby and Ainsworth in the academic disciplines of social and devel-

opmental psychology. In this approach, research has focused primarily

on identifying how attachment relates to health outcomes at various

developmental stages and social contexts (Figure 2). Below, we review

how healthy social attachments are characterized and their impact on

mental and physical wellbeing. Then, we summarize neuroscience

research that has advanced understanding of the cognitive underpin-

nings of healthy attachment styles.

3.1 | Functional role of attachment behavior in
health and wellbeing

Attachment styles have been applied at several life history stages,

from parent–child to adolescent and adult relationships.25–28 Human

attachment styles are broadly classified into two categories—secure

1930 1950 1970 1990 2010

Imprinting
 in geese

(e.g., Lorenz 1935)

Mother-infant bonds
in rhesus monkeys

(e.g., Harlow 1958)

Attachment theory
(e.g., Bowlby 1958)

Attachment styles in
mother-infant bonds

(e.g., Ainsworth 1979)

Attachment styles
in romantic partners

(e.g., Hazan & Shaver 1987)

human 
studies

nonhuman 
studies

Health & 
well-being

(e.g., Cacioppo 2000)

Brain networks
(e.g.,Vrti ka & 

Vuilleumier 2012)

Reciprocal altruism & 
Parental-investment

theories (e.g., Trivers 1972)

Evolution of 
mating systems

(e.g., Emlen & Oring 1977)

Biological market 
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(e.g., Noë et al. 1991)

Neuroendocrinology
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(e.g., Insel & Young 2001)
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(e.g., Rilling & Young 2014)
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F IGURE 2 Timeline of
research related to social
attachment and behavior,
featuring key discoveries,
theories and research trends from
the 1930s to present day. These
accomplishments are split by
traditions that emphasize human
or nonhuman animal models
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and insecure—that are identified based on observed or reported

patterns of interaction.25,29 Generally, a secure attachment style is

thought to encompass healthier and more stable ways of connecting

to others, whereby individuals trust and are supported by their social

partners.24,30,31 Behavioral patterns of secure attachment involve

autonomy as well as high levels of proximity seeking, especially in

times of distress. During the Strange Situation Procedure, for exam-

ple, infants classified as having a secure attachment style readily leave

their caregiver's side to explore the environment, but will approach

the caregiver after being fully separated.25 Hazan and Shaver28 devel-

oped the Adult Attachment Interview to probe similar dimensions of

adult relationships. As in infants, secure attachment in adult relation-

ships implies that partners are comfortable with both intimacy and

autonomy.27,28,30

Insecure styles of attachment, on the other hand, are used to clas-

sify more unstable patterns of interaction; these patterns involve indi-

viduals who are avoidant or anxious in their social attachments.32

During the Strange Situation Procedure, infants are classified into dif-

ferent insecure styles (i.e., avoidant and anxious-ambivalent) based on

their behavior during reunion with a caregiver.24,30 A disorganized

style applies to instances where infants or children show mixed behav-

ioral patterns, which may occur when a caregiver causes both comfort

and distress.33 Adults are categorized into similar styles

(i.e., dismissive, preoccupied and unresolved-disorganized) based on

how they answer questions about their relationships.27–29,34 Both

secure and insecure styles of attachment are thought to reflect behav-

ioral strategies that enable individuals to adapt to their social environ-

ment.35 Yet, insecure attachment styles (especially disorganized)

predict maladjustment and psychopathology across the

lifespan.12,34,36 Fortunately, an individual's attachment style is not

absolute, and recent advances in psychotherapy suggest that interven-

tions can help people overcome attachment-related pathologies.37,38

Attachment relationships have many putative benefits for mental

and physical health, and having high-quality relationships predicts lon-

gevity.13 This association may be, in part, due to the effects of phe-

nomena like social buffering and loneliness (Figure 2). Social buffering

is when the presence of social support, (e.g., an attachment partner)

alleviates the psychological perception of and neuroendocrine

responses to stress and anxiety.39–42 Specifically, there is reduced

activation of the hypothalamic–pituitary–adrenocortical (HPA) system

(e.g., cortisol release) in response to stressors.43 This particular effect

is beneficial because long-term activation of the HPA system can neg-

atively impact cognitive performance and instigate a host of physio-

logical diseases (e.g., heart disease).44,45 However, not all attachments

provide the same social buffering benefits, and a large contribution of

human-focused research is in showing that perceived social support or

“connectedness” is key for social buffering and wellbeing gener-

ally.42,46 Individuals with secure attachments typically perceive more

social support and are more satisfied than those with insecure attach-

ments.47,48 Moreover, individuals with insecure attachments are more

likely to experience social isolation, or loneliness.49

Loneliness is itself a major life stressor, and lonely individuals are

characterized by negative mental states such as anxiety, depressed

mood, low life satisfaction and high sensitivity to social threats.49–53

Lonely individuals also have high morbidity and mortality from cancer,

cardiovascular disease, high blood pressure and many other health

conditions.50,52–57 Lonely individuals are less likely to actively cope by

seeking out support from others, thereby sinking into a vicious cycle

of isolation that is difficult to reverse with therapeutic

interventions.50,54,58

3.2 | Neural mechanisms of human attachment
behavior

Research on the mechanisms of human attachment has focused on

identifying associations between attachment styles and broad neural

activation in hemispheres, cortical structures and networks.59–61 Data

from electroencephalogram (EEG) studies, for example, including stud-

ies of hemispheric asymmetries and event-related potentials, have

shown that these neural patterns vary across individuals as a function

of attachment style.60,62–67 Those data are difficult to relate to results

from animal models, however, and are thoroughly reviewed else-

where.31,32 Since the early 2000s, in contrast, fMRI research has

expanded on EEG studies by identifying brain networks linked to indi-

vidual variation in adult attachment.59,61,68,69 Such investigations have

led to an enriched neuro-anatomical model of attachment (NAMA)

recently articulated by Vrtička and colleagues that not only reviews

anatomical signatures of attachment, but postulates a neural frame-

work that lends itself to comparison with data from animal

models.31,32

Some of the key regions identified include cortico-limbic net-

works involved in social reward and motivation like the ventral stria-

tum, ventral tegmental area (VTA), amygdala, anterior cingulate cortex

(ACC), medial prefrontal cortex (mPFC) and orbitofrontal cortex

(OFC), as well as cortical networks involved in executive function like

the superior temporal sulcus (STS), temporo-parietal junction (TPJ),

anterior insula (IA), inferior frontal gyrus (IFG) and supplementary

motor area (SMA). Individuals varying in their attachment styles and

perception of social isolation show distinct neural signatures, espe-

cially when processing social stimuli that has an emotional valence.

When processing negative social stimuli, avoidant individuals show

suppressed activity in areas of the brain linked to distress like ACC

and IA.70 On the other hand, anxiously-attached individuals show

amplified activity in the ACC, IA and amygdala,70–74 and lonely indi-

viduals show amplified activity in the visual cortex.75 Also, anxiously-

attached and lonely individuals show suppressed activity in areas of

the brain involved in emotion regulation, such as OFC and TPJ.71,75

When processing positive social stimuli, lonely individuals and those

with avoidant and anxious attachment styles show suppressed activity

in brain areas involved in social reward like ventral striatum and

VTA.72,73,75 Moreover, avoidantly-attached individuals show elevated

activity in areas associated with emotion regulation like OFC.74

Another way to investigate cortical underpinnings of social

attachment is to assess individual variation in functional connectivity.

These types of fMRI studies show that lonely individuals exhibit high

4 of 15 GUSTISON AND PHELPS
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connectivity in cingulo-opercular networks associated with tonic alert-

ness and low connectivity in fronto-parietal networks associated with

executive control.76 Conversely, individuals with many social attach-

ments exhibit high connectivity in affiliative (e.g., medial amygdala and

ventromedial PFC, striatum and hypothalamus) and perceptual net-

works (e.g., ventrolateral amygdala, STS and OFC), but not avoidant

networks (e.g., dorsal amygdala, insula and ventrolateral striatum).77 In

sum, these correlational data support the putative hypothesis that dis-

tinct top-down and bottom-up processes underlie individual variation

in the cognitive processing and emotional regulation of social

stimuli.52,61

Although the majority of research on the biological basis of

human attachment centers around activation patterns within specific

brain networks, a complementary line of work highlights the impor-

tance of neurogenetic mechanisms and biochemical

systems.31,32,59,78–80 Variation in attachment style and related behav-

iors often reflect variation in genes that regulate neuropeptide recep-

tors, including oxytocin receptor (OXTR) and the arginine-vasopressin

1a receptor subtype (AVPR1a).81–83 Specific SNP polymorphisms in

the OXTR gene have been shown to predict childhood social problems

and adult patterns of pair-bonding and separation anxiety.84–86 Simi-

larly, polymorphisms in the APVR1a gene in men predict variation in

partner bonding and marital quality.87 Neuropeptide system function-

ing also maps onto variation in social attachment behaviors. Mothers

and fathers who are more affectionate towards their infants show ele-

vated plasma oxytocin levels following infant contact.88 Adults with

higher plasma vasopressin levels report fewer negative marital inter-

actions and greater attachment security.89 In sum, research on the

biological basis of human attachment behavior has offered important

insights into how the functioning of neurobiological systems predict

attachment styles and related attachment behaviors. It is difficult,

however, to tease apart correlation from causation with human

research. For this reason, we can gain important insights from non-

human animal work, where researchers can thoroughly dissect evolu-

tionary and mechanistic processes.

Recently Vrtička and colleagues have argued for two distinct net-

works related to human attachment: an affective network that

includes brain regions related to positive and negative affect (termed

“approach” and “avoidance” modules); and a cognitive network made

up of modules dedicated to emotional self-regulation and mental-

state representation.31,32 Their approach module corresponds to a

network of brain regions that are generally implicated in positive

affect and reward, specifically the ventral striatum/nucleus

accumbens, hypothalamus, ventromedial PFC, OFC and

VTA/substantia nigra. The aversion module comprises the hippocam-

pus and hypothalamus, the amygdala, anterior temporal pole of the

cortex, the insula and the ACC. Unlike the affective network, which is

largely but not exclusively subcortical, their cognitive network is

entirely neocortical. It includes an emotional self-regulation module

made up of the lateral orbitofrontal and dorsolateral prefrontal corti-

ces, while the putative mentalization module consists of the mPFC,

the superior temporal gyrus, STS, the TPJ, the fusiform gyrus and the

posterior cingulate cortex. The authors regard secure attachment as

prototypical (after earlier work90), with derivations based on experi-

ence leading to insecure attachments that are either anxious,

avoidant, or both (disorganized). A key insight of this taxonomy of

attachment and its neural mechanisms are that (1) insecure attach-

ments vary in multiple dimensions that should not be conflated, and

(2) that anxious and avoidant attachment can be regarded as adaptive

responses to developmental and social settings.31,32

The distinction between cognitive and affective networks is a

useful synthesis of diverse dimensions of work in human social neuro-

science, and the affective networks have logical counterparts in ani-

mal research. Animal research, however, enables finer anatomical

parcellation than is currently possible in imaging studies, and enables

precise causal manipulations. The two thus provide complementary

approaches to the understanding of attachment and related

behaviors.

4 | VARIATION IN SOCIAL ATTACHMENT
BEHAVIOR AMONG NONHUMAN ANIMALS

The study of bonding and attachment in animals follows in the foot-

steps of Lorenz and Harlow in the academic disciplines of ethology

and comparative psychology (Figure 2). In this approach, research has

focused on the evolutionary functions of social bonds and the physio-

logical mechanisms evolved to promote attachment. Below, we first

review evolutionary frameworks used to explain why individuals

invest in social bonding. Then, we summarize neuroendocrinology

research that has advanced understanding of how attachment forma-

tion varies across individuals and species. We note also that our use

of “attachment” in this context is broader than its use by social psy-

chologists. Where social psychologists and neuroscientists working in

that tradition may focus specifically on the mechanisms and uses of

proximity maintenance in response to threat, as formulated by Bowlby

and Ainsworth,21 in work with animals, researchers often refer to

attachment more generally as the selective maintenance of proximity

between individuals. Such “attachments” are reflected in the partner-

preference tests used to assess pair-bonding in prairie voles for exam-

ple.91 While the novelty of this test may be sufficient to serve as a

threat and elicit proximity-seeking behaviors, the role of threat in such

tests has not been a focus of animal research. We suggest that the

active maintenance of proximity assists in the collaborative behavior

that defines a bond—a pattern of cooperation that includes but is not

limited to responses to threat. Thus attachment and “affiliation” are

often treated as synonyms in animal research.

4.1 | Evolutionary functions of attachment
behavior

Social attachments can arise between many types of dyads, including

parent–offspring, kin and nonkin. Behavioral ecological explanations

of social behavior generally begin with an assumption that individual

behaviors and variations in those behaviors attempt to maximize

GUSTISON AND PHELPS 5 of 15
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individual fitness.92 Parental-investment theory, for example, pro-

poses that direct parental care (e.g., feeding and carrying) is important

for increasing an offspring's chance of survival, which in turn, benefits

the reproductive success of the parent.93 It is much more common to

observe direct maternal care than to observe direct paternal care, pre-

sumably because females have greater certainty of their parentage

and invest more in fertilization and gestation than do males.93 How-

ever, there are also many species for which fathers invest in direct

care, including several genera of Platyrrhine primates (e.g., Aotus,

Callithrix, and Saguinus),94 many bird species (e.g., Actitis,

Charadrius),95 and fish (e.g., Syngnathidae and Gasterosteidae).96,97

Social attachments between kin also occur outside of the parent–

offspring dynamic—such as sibling alloparental care—which can be

explained by kin-selection theory.98,99 In other words, attachments

may promote investment in kin by contributing to inclusive fitness.

An evolutionary framework also helps explain the function and

variation of social attachment behavior between nonkin (Figure 2).

One way nonkin social attachment behaviors are expressed is through

socially monogamous mating patterns, in which females and males

form “pair bonds” and live together for one or more breeding seasons.

Social monogamy is rare across the animal kingdom with the excep-

tion of avian taxa, and genetic monogamy (i.e., sexual exclusivity to

the mating partner) is rarer still.100,101 For the taxa that form pair

bonds, individuals may gain crucial fitness benefits by cooperating to

defend resources and to raise young.

Nonkin social bonds are frequently expressed outside the mating

context. It is a challenge to explain the evolutionary function of such

social bonds given that the connection to reproductive fitness is not

as straightforward. Theories to help explain why the expression of

social attachment-like relationships vary within a group include recip-

rocal altruism102 and biological market theory.103–105 Reciprocal altru-

ism posits that mutual investment in a long-lasting relationship is

beneficial to both parties because temporary reductions in fitness to

engage in affiliative or cooperative behaviors (e.g., alloparenting,

food-sharing and third party conflict support) are gained back when

these favors are returned.106,107 Similarly, biological market theory

posits that cooperative interactions can be explained by game theo-

retic models in which one behavioral “commodity” is traded for

another (e.g., grooming reciprocity in primates108). In both cases, these

trades are more reliable when individuals cooperate with others with

whom they have developed long-lasting and stable attachment-like

relationships.103

One feature all of these kinds of relationships share in common is

that they involve the collaboration of two individuals through direct

interaction, an interaction that requires some significant degree of

proximity.

4.2 | Mechanisms of attachment behavior in
nonhuman animals

Research on the mechanisms of social attachment behavior in non-

human animals has been largely focused on peripheral and subcortical

systems that regulate maternal behavior and pair-bonding.109

The most peripheral of these systems, the endocrine system, includes

steroid and protein hormones. Ovarian hormones from the

hypothalamic–pituitary–gonadal (HPG) axis—estrogen (e.g., estradiol),

progesterone, and prolactin—are thought to prime maternal respon-

siveness in several species, including rodents, sheep and pri-

mates.110,111 Secretion of glucocorticoids (e.g., cortisol) from the

hypothalamic–pituitary–adrenal (HPA) axis can trigger affiliative

behavior and pair-bond formation in socially monogamous species like

common marmosets and prairie voles.81,91 Conversely, interactions

among individuals can significantly reduce the response to an external

stressor—a phenomenon known as social buffering that occurs, not

only in humans, but also in a variety of other taxa including prairie

voles and nonhuman primates.40,41,112

Decades of nonhuman animal research shows that neuropeptide

systems, notably oxytocin (OT) and vasopressin (AVP), are involved in

individual variation in social behavior.83,110,111,113–117 OT administra-

tion is shown to stimulate maternal responsiveness in rodents, sheep

and primates,118–120 and circulating peripheral levels of OT are posi-

tively correlated with alloparenting behavior in common marmo-

sets.121 Moreover, both OT and AVP systems are thought to facilitate

affiliative behaviors critical for pair-bond development in socially

monogamous taxa, including new world primates,122–124 prairie

voles125 and California mice,126 songbirds,127 and cichlid fish.128

Several subcortical brain structures have been implicated in the

regulation of social attachment behavior, many of which contain

receptors for the neuromodulator systems summarized above. The

medial preoptic area (MPOA) and bed nucleus of the stria terminalis

(BNST) are thought to act as central hubs in the “maternal neural

network”,110 as well as the “social behavior” and “social decision-
making” networks.129–131 MPOA and BNST express receptors for

estradiol, prolactin and OT which, when activated, are thought to initi-

ate maternal behavior via downstream areas like the ventral tegmental

area (VTA), nucleus accumbens (NAcc) and ventral pallidum (VP). In

rats, for example, MPOA estradiol receptor expression and sensitivity

levels correspond to individual variation in maternal styles, with highly

attentive mothers having enhanced levels of receptor expression and

sensitivity.132 In addition, oxytocin receptors in the VTA are thought

to play a key role in both maternal care and pair-bond formation, spe-

cifically by interacting with the NAcc dopamine in the mesolimbic

“reward” system.133–135 In rats, pharmacological inhibition of VTA OT

receptors decreases NAcc dopamine release in rats, which in turn

reduces maternal behavior.135 In female prairie voles, pair-bonding

behavior requires activation of both OT and dopamine D2-type recep-

tors, and pharmacological inhibition of one receptor type prevents the

other from having an effect.133 In male prairie voles, however, pair-

bonding behavior is enhanced by pharmacological activation of NAcc

D2-type receptors and AVP 1a receptors in VP.136,137

The functioning of neuromodulator systems within the brain, and

their impact on social attachment behaviors, are sensitive to develop-

mental processes involving genetic and epigenetic programming and

environmental influences.138–140 Polymorphisms in the genetic loci

for OT and AVP receptors (i.e., OXTR and AVPR1a) predict intra- and
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inter-species differences in rodent and primate social behavior.141–143

Early life experiences (e.g., maternal care) can modify the epigenetic

programming of these genetic loci, leading to inter-generational

changes in attachment behavior.144 In prairie voles, for example, lower

levels of parental care resulted in offspring having enhanced DNA

methylation of CpG regulatory sites in the OXTR gene.145 With recent

advances in tools to manipulate gene expression and edit genomes, it

is becoming more feasible to assess the function of OT and AVP

receptor genes in regards to attachment behavior.146 In prairie voles,

for example, knock-down of NAcc OXTR mRNA in NAcc results in a

reduction of alloparental and disrupted partner preference

formation.147

In sum, nonhuman animal research has offered a unique perspec-

tive on evolved mechanisms for social attachment behavior and its

variations. Much of this work emphasizes the contribution of bio-

chemical systems (e.g., oxytocin and vasopressin) and their modulation

of subcortical neural circuits.

5 | PRAIRIE VOLES AS A MODEL SPECIES
FOR INDIVIDUAL DIFFERENCES

Voles are small microtine (Microtus spp.) rodents found in the grass-

lands of North America, Europe and northern Asia. Interest in the

social behavior of voles, and specifically prairie voles (M. ochrogaster),

began in the 1970s and 80s when parallel findings from laboratory

and field-based studies uncovered wide variability in vole mating

systems.148–150 Long-term demographic data showed that prairie

voles were more likely to be repeatedly caught in the same male–

female pairs than were their sister taxa.148 Moreover, paired prairie

voles in captivity expressed tolerance towards their mates but were

aggressive towards novel opposite sex individuals. This body of work

led to the consensus that prairie voles are one of the few mammals

that form long-lasting female–male attachments, or “pair bonds.”
Since this discovery, several labs have sought to understand the evo-

lution and neural mechanisms of prairie vole pair bonds, and specifi-

cally, of individual variation in bonding behavior.151 Here, we review

how research on prairie vole pair-bonding strategies has integrated

evolutionary, developmental, and mechanistic approaches to explore

individual variation in behavior related to the expression of male–

female social attachments.

5.1 | Individual variation of mating strategies

The formation and expression of pair-bonding is highly diverse in wild

prairie vole populations. Most individuals form pair bonds, in which

both partners engage in biparental care and are “residents” in a terri-

tory that they defend from intruders. This is not the only strategy

available to voles. Up to 45% of males adopt a “wandering” strategy

in which they are non-territorial and unpaired.150,152,153 Being

unpaired does not mean that an individual will have no offspring. In

fact, wanderers sire about a fourth of the offspring in a population.154

This means that even though paired individuals experience greater

reproductive success, adopting the wandering strategy is a useful

alternative. There are also alternative strategies within paired individ-

uals. Up to 25% of paired individuals engage in extra-pair fertilizations

(EPFs), and the number of embryos produced by promiscuous animals

is similar to the number of embryos produced by faithful animals.155

These observations suggest that alternative mating strategies within

paired individuals have similar fitness. These observations also dem-

onstrate that social monogamy as opposed to genetic (i.e., sexually

exclusivity) monogamy characterizes the prairie vole mating system at

the species level,155,156 while at the individual level, animals fall at dif-

ferent points along this social-genetic monogamy spectrum.155,157,158

An important behavioral component of male alternative mating

tactics is how individuals range within their environment. In general,

males with larger home ranges have more EPFs.154 Resident males

with the smallest home ranges tend to sire young exclusively with

their partners. On the other hand, resident males with larger home

ranges gain EPFs with neighboring females, and in turn, they are more

likely to be cuckolded by their female partners. Thus, male space use

predicts the mating strategies taken by residents, with consequences

for extra-pair and intra-pair paternity. Similarly, non-resident wan-

derer males with the largest home ranges are the ones that gain EPFs,

suggesting that the wandering strategy is successful when males'

home ranges overlap with several female home ranges. This high level

of diversity in prairie vole pair-bonding strategies prompts two funda-

mental questions. What neurodevelopmental mechanisms underpin

these alternative strategies, and second, how does natural selection

support variation in these neural mechanisms? Below, we review

research that addresses these two questions, with a specific focus on

the vasopressin system and male social behavior.

5.2 | Cortical vasopressin and mating strategy

Vasopressin (AVP) is a neuropeptide involved in a wide spectrum of

social behaviors, especially among male mammals.129–131 In voles,

species and individual differences in mating strategies reflects subcor-

tical and cortical variation in AVP receptor distribution. As compared

with promiscuous species, prairie voles have high AVPR1a expression

in ventral pallidum, a region of reward circuitry that supports pair-

bond formation.159,160 Antagonizing these pallidal receptors in prairie

voles disrupts pair-bonding in males,137 while overexpressing these

receptors in promiscuous male meadow voles leads to attachment-like

behaviors.161 Although pallidal AVPR1a expression reflects species

differences in mating strategy, this variation does not generalize to

the individual level. Resident and wanderer prairie voles, as well as

paired and unpaired voles, all have similar levels of AVPR1a pallidal

expression.154,162 This lack of variation is interpreted as having been

driven by natural selection on the capacity to form bonds: all prairie

vole males have high pallidal V1aR, and all are capable of pair-bonding.

The lack of variation in the pallidum, however, has spurred a focus on

the remarkable individual differences evident elsewhere in the brain,

and specifically, cortical areas associated with spatial memory.162
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Retrosplenial cortex (RSC) is part of a larger network that is

involved in a variety human cognitive processes, ranging from naviga-

tion and episodic memory to future planning.163 A growing body of

work on prairie voles suggests that AVP receptor expression in the

RSC (i.e., posterior cingulate) mirrors individual differences in social

motivation, memory and cognition. Male wanderers and resident

males with overlapping territories (and more EPFs) have low AVPR1a

expression levels in RSC, whereas resident males with little territory

overlap (and more IPFs) have greater RSC-AVPR1a expression.154,164

These links between mating strategy and cortical AVP receptor abun-

dance is specific to males.165 Taken together, these findings indicate

that the AVP system shapes individual differences in socio-spatial

memory and mating strategy. One potential explanation is that males

with high RSC-AVPR1a are better equipped to remember the spatial

location of social interactions, and in turn, guard their mates.158

5.3 | Neurodevelopmental processes and cortical
AVPR1a

Understanding the origins of behavioral diversity requires research

that spans across multiple biological levels. AVPR1a abundance in

RSC may exert a direct influence on prairie vole space-use and sexual

fidelity, but how does this cortical variation emerge in the first place?

Such cortical variation may originate from early life experiences and

biological processes that are genetic, epigenetic, or both.158 A large

body of rodent work indicates that perinatal interventions can alter

neuroendocrine profiles and social behavior as adults.79,140 In prairie

voles, early life interventions include variation in parental care, social

enrichment and external stressors,166–169 as well as biochemical inter-

ventions like exposures to exogenous neuropeptides and valproic

acid.167,170,171 Specifically, biparental care may impact AVP receptor

expression in the male prairie vole cortex. One study showed that

males raised with a father have lower AVPR1a receptor densities in

the RSC than males raised without a father, a endophenotype that

mirrors the “wandering” male mating strategy.172 One explanation for

how early social experiences may translate into later-life neuroendo-

crine profiles is that individual genotypes interact with epigenetic pro-

gramming at the AVPR1a gene locus.169,173

Early prairie vole research indicated that differences in the

AVPR1a gene (e.g., promotor length) is a putative driver of differences

in receptor expression.174 A series of subsequent studies show that

variation in RSC-AVPR1a abundance stems from variation in single

nucleotide polymorphisms (SNPs) within the AVPR1a gene.164,173,175

In brief, four tightly-linked SNPs are found within cis-regulatory

regions of the AVPR1a gene. These SNPs influence epigenetic proper-

ties of the locus, for example, by shaping the abundance of CpG sites

in a putative enhancer sequence. These genotype differences lead to

differences in DNA methylation, and in turn, variation in AVPR1a

gene transcription. Two allele types—LO and HI—have been identified.

The LO allele has more CpG sites in the putative intron enhancer

sequence and is associated with lower RSC-AVPR1a abundance, as

compared with the HI allele. In sum, behavioral variation in mating

strategy is partially driven by variation in the abundance of AVPR1a in

RSC, and this cortical variation is partially driven by individual differ-

ences in genotype and DNA methylation at the AVPR1a locus.

5.4 | Selection of genetic variation at the avpr1a
locus

Given that natural selection acts on heritable traits, the next logical

question to ask is whether selection actively maintains variation in

genotype. Two lines of evidence suggest that individual variation in

RSC-AVPR1a and mating strategy is supported by selection processes.

First, HI and LO alleles are found to have similar levels of reproductive

fitness in the field.164 Specifically, HI alleles are more fit in IPF con-

texts in which resident males exhibit high sexual fidelity. Conversely,

LO alleles are more fit in EPF contexts, where wanderer or resident

males mate with non-partner females. These patterns suggest that

alternative male mating strategies have similar levels of evolutionary

fitness.

The second line of evidence comes from data on the frequency of

SNPs in the AVPR1a locus.164,176 This locus has higher levels of

polymorphism—specifically, SNPs that are more likely to reach inter-

mediate frequencies in the population—than is observed in the

genome as a whole.176 This pattern of molecular variation is a hall-

mark of natural selection that actively maintains alternative versions

of alleles, a phenomenon known as balancing selection. Moreover, this

signature of balancing selection is concentrated in gene regulatory

sequences known as enhancers that seem to be active in the prairie

vole RSC. Together, these lines of evidence suggest that natural selec-

tion actively maintains diversity in cortical V1aR abundance in the

form of alternative male strategies.158

6 | APPLICATION OF MULTI-
DIMENSIONAL FRAMEWORKS TO
ATTACHMENT

As discussed earlier in the review, there are a variety of frameworks

for understanding behavior that focus on the notion that “causality”
can occur at many levels (Figure 1). Understanding behavior thus

requires some specificity about the level of causality investigated, and

some humility about the usefulness of other perspectives. There is,

however, also value in examining these diverse levels in parallel.

Because causal explanations at the level of psychological constructs,

for example, must ultimately rest on underlying mechanisms, the two

sorts of explanations are not at odds, but rather are logical comple-

ments to one another. Indeed, science is always limited by the simpli-

fying assumptions and technical constraints imposed by available

tools. Examining behaviors from different levels of causation can test

the coherence of our explanations, and this approach also provides a

means of checking the shortcomings of one perspective against the

very different shortcomings of another. This sort of triangulation to

develop robust explanations resembles a contemporary multi-
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dimensional approach forwarded by Cacioppo and Decety in social

neuroscience, which they have termed the “Golden Triangle”.177,178

The goal of the Golden Triangle is to combine a trifecta of analyti-

cal approaches to better understand complex psychological constructs

relevant in social neuroscience, such as empathy and loneliness. This

multi-tiered approach includes behavioral assessments, physiological

measurements, and experimental manipulations (Figure 1). The pur-

pose of behavioral assessments is to develop tasks that break down

psychological constructs into smaller components that can be reliably

quantified and associated with neural processes. Behavioral assess-

ments include reaction time to stimuli, choice tasks, and question-

naires. Physiological measurements include correlative data operating

on a wide range of temporal (millisecond to ontogeny), and spatial

(molecules to sociocultural structures) scales. Common correlational

measurements include neuroimaging techniques (e.g., EEG and fMRI)

and peripheral assays like heart rate variability and neuroendocrine

levels. Experimental manipulations are methods used to determine

causal effects on various biological, temporal and spatial scales. These

methods include TMS, pharmacological treatments, lesions and exper-

iments on nonhuman animal models. This approach is analogous to

the endophenotype approach in psychiatry, where intermediate phe-

notypes for complex neuropsychiatric diseases are described through

the synthesis of behavioral symptoms and quantifiable biological

traits.179

Returning to our perspective on attachment, can we see the

effectiveness of such multi-dimensional approaches? What insights

do these approaches provide, and what remains to be done?

The history of work on attachment has revealed the value of mul-

tidisciplinary perspectives. As we have discussed, the ecological and

evolutionary study of imprinting and parent-offspring attachments led

directly to the intellectual breakthrough that the love between par-

ents and their children is not a mere secondary consequence of food

or comfort.15,20 More recently, insights from prairie voles enabled

detailed mechanistic explorations of the roles of specific brain regions

and neuromodulators on the formation of bonds.109 This work directly

inspired social psychologists and others to look below the cortex, into

reward regions, where they found the predicted correlates of natural

attachments.59 Indeed, evolutionary first principles suggest that the

reward system should be essential to any social bond. The reward

system keeps score of whether a behavior is likely to be in one's best

interest: it is reward that drives animals to be close to one another.

The history of research on attachment shows a productive dialog

between molecular, neural, psychological and evolutionary levels of

analysis.

Perhaps a major new area for synthesis remains in the study of

attachment styles. Here, psychologists have defined natural patterns

of individual differences, and linked them both to social environments

and to neural function.61,180 Insecure attachment styles pre-dispose

people to negative social interactions and poor health outcomes, and

are often viewed as pathological.12 And yet, insecure attachment

styles are quite common, occurring in roughly one-third of children.181

Perhaps pathology is not the right framework, or at least not the only

framework, from which to view these styles.

We propose an integrative framework that approaches attach-

ment behavior from multiple biological and social levels, merging tra-

ditions from human and animal-focused research (Figure 3). One

strength of the nonhuman research on social attachment is the sheer

number of ways that researchers can causally link behavior to mecha-

nisms. These mechanisms include, but are not limited to, genetic pro-

gramming and developmental processes, biochemical and neural

system functioning, contextual plasticity and learning, as well as long-

term fitness consequences and evolutionary outcomes (Figure 3A).

Work in animal behavior emphasizes that the fitness benefits of social

behaviors often depend on the behaviors of others, and selection can

actively maintain alternative social strategies. We have seen that

among prairie voles, there are different mating strategies used, and

selection actively maintains these differences.164 Animals who engage

in extra-pair paternity are not disordered in any meaningful sense.

The multi-scale examination of this causality, that includes field exper-

iments, measures of fitness, measures of gene regulation, and assess-

ments of the long history of selection written in DNA diversity

patterns all provide a cogent perspective that individual differences in

this dimension are alternative means of success (Figure 3B).

Work on human behavior emphasizes styles of attachment across

the lifespan, from early life relationships with caregivers to social

bonds between peers and romantic partners (Figure 3A). We suggest

that individual differences in attachment styles might be viewed as

alternative attachment strategies that are valuable in different
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contexts. This interpretation parallels the examination of loneliness as

an adaptive response to social isolation, one that transitions from con-

nection seeking to a more defensive posture as the likelihood of a

useful bond becomes less likely. If this is true, one might expect to

find attachment styles in a variety of social species. Indeed, attach-

ment styles have been reported not only in humans, but in rhesus

macaques,182 domestic dogs,183,184 and even cats.185 This interpreta-

tion accords with many contemporary accounts of human attachment

styles, in which anxious or avoidant attachment styles are regarded as

functional responses to variation in social experience.31,32 It is also

consistent with an increasing recognition that temperament may con-

tribute to dimensions of attachment without regard to experience,

and that attachment styles may be updated in light of new experi-

ences or the qualities of specific relationships.186 The perspective

from animal behavior offers another novel and very explicit prediction

regarding individual differences in attachment. To the extent that

attachment styles have some heritable variation identifiable in suitably

powered genome-wide association studies, the DNA polymorphisms

associated with such styles should exhibit signatures of balancing

selection, much as does the AVPR1A locus of prairie voles164,176

(Figure 3B). Such approaches have been used to identify selection

favoring the diversity of human faces, for example, in the signaling of

individual identity.187 Such analyses would complement other ideas

about the maintenance of attachment diversity, such as the social

defense hypothesis of Ein-Dor and colleagues.188

Within the more limited perspective of neural mechanisms of

attachment, consideration of animal and human data together suggest

fruitful areas for future research. In the NAMA model, for example,

the affective networks derived from human studies map well onto

networks implicated in animal bonding.31,189 For example, the

“approach module” outlined by the NAMA model includes the ventral

striatum, prefrontal cortex, orbitofrontal cortex and the ventral teg-

mental area/substantia nigra.31 In prairie voles and other rodents, the

pathways implicated in social reward include most of these structures,

as well as others, and offer greater resolution. For example, in the

ventral striatum and nucleus accumbens, calcium-imaging work on

prairie voles reveals that this structure contains neurons that are

active just before social approach, and that the number of such neu-

rons grows with the formation of a social bond.190,191 Similarly,

optogenetic manipulations of the coupling between nucleus

accumbens and prefrontal cortices shape the formation of prairie vole

bonds.192 While the affective network of the NAMA model agrees in

many respects with perspectives derived from rodent work, in others

it seems to diverge. In the NAMA model, for example, the anterior cin-

gulate and insular cortices are assigned to the aversion module, but in

prairie voles oxytocin seems to act in these brain regions to promote

bonding.112,193 In a study of empathy-like behavior in prairie voles,

oxytocin in the anterior cingulate seemed to modulate the ability of

consolation grooming to reduce partner stress.112 Similarly, rodent

work suggests heterogeneity in the functions of hypothalamic and

amygdala contributions to positive and negative behaviors that are

not entirely consistent with their assignments in the NAMA model

(though this likely reflects a limitation of the precision of imaging).

Specifically, medial amygdala—preoptic area connections contribute

to social reward and affiliative responses, and as such would not

belong in the aversion module. Such discrepancies suggest productive

areas of research for human neuroscience.

The NAMA model also suggests novel directions for rodent

research. For example, common models of pair-bonding focus on posi-

tive affect189; incorporation of negative affect would significantly

enrich this perspective. In both mice and humans there is a pathway

including substantia nigra and ventral tegmental area that regulates

negative affect associated with loneliness.194,195 This path has been

suggested to part of a “social homeostasis circuit”196; perhaps it is

also involved in the drive to approach specific partners. Another sug-

gestion that derives from studies of human attachment concerns the

importance of threat in proximity maintenance. Stress hormones like

cortisol are known to promote bond formation in prairie voles,81,91

but it is not clear whether acute threats promote proximity-seeking.

Understanding such mechanisms would likely enhance our under-

standing of attachment in both humans and nonhuman animals.

One last difference between human and animal studies also sug-

gests interesting possibilities for future work. What role, if any, do cog-

nitive processes play in the attachment behaviors of nonhuman

species? Are there analogs or homologs of the substrates of mentalizing

and self-regulation that might be at play in the behavior of nonhuman

species? For rodents, one is tempted to assume that there are not.

However, the demonstration of empathy-like behavior in prairie

voles112 and the remarkable degree to which animal work has informed

our understanding of affective dimensions of human love suggest that

this possibility should not be disregarded a priori. These are, as we have

emphasized, distinct research traditions, and where direct comparisons

have been possible, there has been a surprising congruity.

7 | CONCLUSIONS

We have surveyed a broad range of intellectual frameworks—and pro-

pose a new framework (Figure 3)—for thinking about the causes of

social behavior. These include the examination of multiple levels of

analysis as enumerated by scholars dating back to Aristotle. We have

described how the distinct intellectual traditions of researchers

focused on different levels of causation can offer insights that lead to

productive areas of inquiry. Using the case of social attachments, we

argue that the history of this discipline is rich with such examples, dat-

ing back to its very founding. Contemporary animal studies on the

mechanisms and evolution of attachments offer new insights and new

avenues of inquiry for the study of human bonds. Social psychology,

in contrast, with its detailed examination of human commonalities and

differences, also offers new behavioral phenotypes, new intellectual

constructs, and new neural substrates for exploration by evolutionary

biologists and comparative psychologists. In these senses, the tradi-

tions followed by these diverse communities of scientists are poised

for intellectual cross-fertilization and synthesis. Indeed, the study of

attachment is a case study in the usefulness of integrative and inter-

disciplinary approaches.
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