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ABSTRACT

The neuropeptides arginine vasopressin (AVP) and oxytocin
(OT) are key modulators of vertebrate sociality. Although
some dgeneral behavioral functions of AVP and OT are
broadly conserved, the detailed consequences of peptide
release seem to be regulated by species-specific patterns
of receptor distribution. We used autoradiography to char-
acterize central vasopressin 1a receptor (V1aR) and OT re-
ceptor (OTR) distributions in two species of singing mice,
ecologically specialized Central American rodents with a
highly developed form of vocal communication. While both
species exhibited high ViaR binding in the auditory thala-
mus (medial geniculate), binding in structures involved in
vocal production (periaqueductal gray and anterior hypo-

thalamus) was significantly higher in the more vocal spe-
cies, Scotinomys teguina. In S. xerampelinus, receptor bind-
ing was significantly higher in a suite of interconnected
structures implicated in social and spatial memory, includ-
ing OTR in the hippocampus and medial amygdala, and
V1iaR in the anterior and laterodorsal thalamus. This pattern
is concordant with species differences in population density
and social spacing, which should favor enhanced sociospa-
tial memory in S. xerampelinus. We propose that ViaR and
OTR distributions in singing mice support an integral role for
the AVP/OT system in several aspects of sociality, including
vocal communication and sociospatial memory. J. Comp.
Neurol. 516:321-333, 2009.
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Across vertebrates the arginine vasopressin (AVP) and oxy-
tocin (OT) neuropeptide family is integral to a diverse range of
social and reproductive behaviors. For example, the ancestral
form of mammalian vasopressin, vasotocin (AVT) regulates
aggression and singing in songbirds (Goodson, 1998; Good-
son and Adkins-Regan, 1999), courtship behavior in newts
and fishes (Thompson and Moore, 2000; Bastian et al., 2001;
Salek et al., 2002; Grober et al., 2002), and mate calling in
frogs (Marler et al., 1995). Likewise, isotocin (IT), an oxytocin
homolog found in teleost fish, influences vocal production
(Goodson and Bass, 2002) and stimulates social investigation
(Thompson and Walton, 2004). In mammals, AVP and OT are
also well known as modulators of a variety of cognitive and
emotional processes, most notably, learning and memory,
fear and aggression, and trust and selective affiliation (de
Wied et al., 1976; Dantzer et al., 1987; Ferris et al., 1997; Cho
et al., 1999; Winslow et al., 2000; Lim et al., 2004; Kirsch et al.,
2005; Kosfeld et al., 2005).

The neural distributions of AVP/AVT and OT/IT immunore-
active fibers are relatively conserved across vertebrates
(Moore and Lowry, 1998; Goodson et al., 2003, 2004; Rosen et
al., 2008). Receptor distributions, however, can differ dramat-
ically between closely related species (e.g., Insel et al., 1994;
Beery et al., 2008). While comparisons across fishes, amphib-
ians, birds, and mammals indicate that vasopressin and oxy-
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tocin and their homologs regulate many of the same types of
social behaviors throughout the vertebrate lineage (reviewed
in Goodson and Bass, 2001; Goodson, 2005), work in rodents
has highlighted the species- and often sex-specific roles of
AVP and OT in coordinating sociosexual and parental behav-
iors (reviewed in Young and Wang, 2004; Donaldson and
Young, 2008). This combination of conservation and diversi-
fication in behavior and its underlying neural circuitry sug-
gests that, while neuropeptide receptor distributions may re-
spond rapidly to selection on behavioral phenotypes, general
behavioral functions of the ancestral AVP/OT system are likely
to be retained in mammals.
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The well-supported role of nonmammalian homologs of
AVP and OT in vocal behavior in fishes, frogs, and birds
indicates that regulation of vertebrate acoustic circuitry may
be one such conserved function of vasopressin-related pep-
tides (Goodson and Bass, 2001, and references therein;
Goodson et al., 2003). Surprisingly, the potential importance
of vasopressin and oxytocin in mammalian vocal communica-
tion has received little attention.

Here we describe oxytocin receptor (OTR) and vasopressin
subtype 1a receptor (V1aR) expression patterns in two spe-
cies of singing mice, Scotinomys teguina and S. xerampelinus,
ecologically specialized Central American rodents that share
a unique mode of social communication. Both species exhibit
a complex vocal repertoire, which is used in both close-range
and long-distance communication in a variety of social con-
texts. Most notable is a highly stereotyped advertisement call
comprised of a rapidly articulated trill (up to 20 pulses/
second, S.M. Phelps, unpubl.) that spans audible and ultra-
sonic frequencies (8-50 kHz; Hooper and Carlton, 1976; Miller
and Engstrom, 2007). Because the roles of vasopressin and
oxytocin in mammalian vocalization and auditory processing
are largely unknown, establishing the distributions of V1a and
OT receptors in the brains of highly vocal rodents is a critical
first step to defining the functions of these neuropeptides in
mammalian acoustic communication.

A second motivation for characterizing V1aR and OTR distri-
butions in singing mice comes from interspecific differences in
conspecific spacing, degree of maternal investment, and ther-
moregulatory demands, all factors that influence social structure
(Komers and Brotherton, 1997; Ebensperger, 2001; Kokko and
Jennions, 2008). Both species are montane but differ substan-
tially in their elevational distributions: S. teguina occurs at mid-
elevations (~1,000-2,500 m), while S. xerampelinus is restricted
to montane cloud forest and high altitude shrub and grasslands
(=2,000-3,500 m; Hooper, 1972). In S. xerampelinus, longer ges-
tation, smaller litters, and slower pup development suggest
greater maternal investment per offspring relative to S. teguina,
a pattern consistent with altitudinal effects on life history traits in
birds (Badyaev and Ghalambor, 2001). Likewise, while both spe-
cies are social and neither are considered monogamous (Hooper
and Carleton, 1976; Blondel et al., 2009), data from a sympatric
site suggest substantial differences in density and spacing
patterns (S. teguina, 163/ha; S. xerampelinus, 85/ha, B. Pasch,
unpubl.). Avian patterns of space use and territoriality are regu-
lated by AVT, and it has been suggested that the lack of a
consistent correlation between V1aR distributions and mamma-
lian monogamy may be explained by closer association of the
AVP system with ecologically based species differences in
space use, sociality, and aggression (Bester-Meredith et al.,
1999; Goodson and Bass, 2001; Goodson et al., 2006). Thus,
singing mice represent a potential model for studying how neural
mechanisms of social behavior evolve in response to ecological
pressures.

We used quantitative autoradiography to characterize V1aR
and OTR expression patterns in S. teguina and S. xerampeli-
nus. Specifically, our aims were to 1) describe the distribution
and density of these neuropeptide receptors in rodents with a
highly developed form of vocal communication, and 2) explore
variation in receptor distributions in relation to species differ-
ences in social spacing and maternal investment.
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MATERIALS AND METHODS
Animals

Scotinomys teguina and S. xerampelinus males and females
used in this study were outbred lab-reared adults (age =60
days; Hooper and Carleton, 1976), derived from wild-caught
individuals captured in Monteverde, Costa Rica (S. teguina)
and Parque Internacional La Amistad, Panama (S. xerampeli-
nus). Both species were maintained at an ambient tempera-
ture of 19-22°C on a 12:12 light cycle, approximating the high
elevation, tropical conditions associated with year-round
breeding in the wild (Hooper and Carleton, 1976; S. Phelps,
pers. obs.). Animals were housed in mixed-sex pairs in
9-gallon aquaria. Both species are insectivorous, but plant
material comprises 16-28% of their diet in the wild (Hooper
and Carelton, 1976). To approximate the animal portion of
their diet, captive mice were given kitten chow ad libitum,
together with live mealworms as enrichment. This diet was
supplemented with a mixture of sunflower seeds, peanuts,
and legumes.

Subjects were euthanized by CO, inhalation; brains were
extracted immediately, frozen on dry ice, and stored at —80°
C until sectioning. Brains from 16 S. teguina (7 males, 9
females) and 23 S. xerampelinus (9 males, 14 females) were
used in the V1aR study; the brains of 18 S. teguina (8 males, 10
females) and 20 S. xerampelinus (10 males, 10 females) were
used in the OTR study. All animal protocols were approved by
the IACUC committee at University of Florida and were in
accordance with the NIH Guide for the Care and Use of
Laboratory Animals.

Tissue preparation and autoradiography

Four sets of coronal sections (20 um thick, 100 um apart)
were cut in a cryostat, starting at the olfactory bulbs and
extending caudally to the decussation of the corpus callosum
at the level of the medial geniculate. Sections were thaw-
mounted on Superfrost plus slides (Fisher Scientific, Pitts-
burgh, PA) and stored at —80° C until processing for autora-
diography.

Autoradiography was performed using a 50 pM concentra-
tion of AVP receptor '2°l-linear-vasopressin (AVP; Perkin-
Elmer, Oak Brook, IL, NEX3100) or 40 pM concentration of OT
receptor ligand, '%l-ornithine vasotocin (OVT; PerkinElmer,
NEX254) following standard protocols (Insel and Shapiro,
1992). Briefly, thawed sections were fixed in 0.1% paraformal-
dehyde, washed in 50 mM Tris (pH 7.4), and incubated for 60
minutes with 2°I-labeled ligand in 50 mM Tris, 10 mM MgCl,,
0.1% bovine serum albumin (BSA), and 0.05% bacitracin.
Excess ligand was removed with 50 mM Tris / 10 mM MgCl,
washes. Sections were rapidly air-dried and exposed to Kodak
BioMax MR film along with 12°|-labled autoradiographic stan-
dards for 72 hours. Controls for nonspecific V1aR and OTR
binding were incubated with an additional 50 uM of nonradio-
active (d(CH,)s',Tyr(Me)?Arg®)-vasopressin  or  (Thr*,Gly")-
oxytocin, respectively (Bachem, Torrance, CA, H-7710; H-5350).

Anatomical localization, analysis, and figure
preparation

A subset of sections was stained for either cresyl violet (Fig.
1) or acetylcholinesterase to assist in defining neuroanatomi-
cal boundaries in regions with V1a and OT receptor binding.
Structures were identified using the rat atlas (Paxinos and
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Figure 1.

Cresyl violet-stained sections from S. teguina showing the locations of structures in which ViaR and/or OTR binding were quantified.
Arrowheads in A-H indicate dorsal endopiriform nucleus (DEn), prefrontal cortex (PfC), lateral septum (LS), indusium griseum (IG), nucleus
accumbens shell (Nash), ventral pallidum (VP), ventral anterior thalamus (VAt), anterior hypothalamus (AH), lateral globus pallidus (LGP), anterior
thalamus (At), ventromedial hypothalamus (VMH), medial (MeA) and central (CeA) amygdala, zona incerta (ZI), mediodorsal (MDt), laterodorsal
(LDt), ventroposterior (VPt), and ventrolateral (VLt) thalamic nuclei, supramammillary nucleus (SuM), dorsal lateral geniculate (DLG), dentate
gyrus (DG), CA1, CA2, and CA3 hippocampal fields, periaqueductal gray (PAG), and medial geniculate (MG). Gross neuroanatomy of S.
xerampelinus appears identical. Scale bar = 1 mm.

Watson, 1998). Optical density measures for receptor binding  sured bilaterally in three sections and averages of these read-
were collected using the program NIH ImagedJ (available at ings were converted to decompositions per minute in rat brain
http://rsb.info.nih.gov/ij/). Each region of interest was mea- tissue equivalent using an autoradiographic standard for each



Research in Systems Neuroscience

324

S. teguina

Figure 2.

The Journal of Comparative Neurology

P. CAMPBELL ET AL.

S. xerampelinus
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Autoradiograms of '?%l-linear-AVP binding in singing mice in the absence (A,B) and presence (C,D) of selective receptor antagonist,
(d(CH,)s', Tyr(Me)?,Arg®)-vasopressin. Arrowheads indicate corpus callosum (cc) and anterior commissure (ac), in which '?°l-linear-AVP is
selectively bound in S. xerampelinus (B,D) but not in S. teguina (A,C). Scale bar = 1 mm.

film. Nonspecific binding was estimated from background
levels of cortical binding on the same sections, averaged, and
subtracted from mean specific binding for the corresponding
region of interest. V1aR binding was quantified in 28 brain
regions; OTR binding was quantified in 15 regions. Total brain
V1aR and OTR binding were calculated for both species as
the average of all measurements for each receptor type. V1aR
fiber tract binding was not included in this comparison. Be-
cause this is the first description of V1aR and OTR distribu-
tions in Scotinomys we measured receptor density in all struc-
tures with appreciable binding and took note of structures in
which lack of binding in Scotinomys was atypical of distribu-
tions reported for other species.

Data were analyzed in Statview (v. 4.57.0.0, Abacus Con-
cepts, Berkeley, CA) using a two-way analysis of variance
(ANOVA) with species and sex as between-subject variables.
We used the method of Benjamini and Hochberg (1995) to
adjust alpha-levels for multiple comparisons (V1aR, « = 0.022;
OTR, a = 0.03). Comparisons with a significant main effect of
sex, or species by sex interaction, were evaluated further with
a Fisher’s PLSD test.

Brain tissue sections were visualized by digitizing either
films (autoradiograms) or slides (cresyl violet stains) on a
Microtek Scan Maker 5900 at 1200 ppi with 8-bit gray-scale
settings. Representative images of focal brain sections were
imported into Adobe Photoshop CS3 (v. 10.0.1, San Jose, CA)
and contrast and brightness were adjusted to minimize
among-individual differences in nonspecific binding. Figures
were assembled and labeled in Adobe lllustrator CS3 (v.
13.0.2).

RESULTS

128|-linear-AVP (V1aR) and '2°I-OVT (OTR) binding in singing
mice was abundant and specific (Figs. 2-4). Significant spe-
cies differences were detected in the distributions of both
neuropeptide receptors (Tables 1, 2). Sexual dimorphism was
not detected in S. teguina. In S. xerampelinus, however, '25]-
OVT binding in the medial amygdala and CA1 field of the
hippocampus was significantly higher in males. S. xerampeli-
nus was also unique in having extensive '2%I-linear-AVP bind-
ing in the fiber tracts of many (Figs. 2B, 3K-0), but not all (Fig.
3F-J), brains examined. This surprising result does not seem
to be a consequence of nonspecific binding: the presence of
an excess of unlabeled AVP receptor ligand eliminated spe-
cific binding in all regions, including fiber tracts, and nonspe-
cific binding was weak and homogeneous in both species
(Fig. 2). 2%1-OVT-specific binding was similarly blocked by
unlabeled OTR ligand (data not shown).

V1a receptor autoradiography

Total brain '2%I-linear-AVP binding did not differ between S.
teguina and S. xerampelinus (ANOVA: F; »7) = 0.02, P = 0.9;
Table 1). Specific binding was evident in structures through-
out the brains of both species and interspecific differences
were relatively complex, particularly in the thalamus (Fig. 3).
Both species had comparably high binding in the lateral sep-
tum and in the centromedial and ventrolateral nuclei of the
thalamus. Binding was moderate in the supraoptic nucleus,
the paraventricular nuclei in the hypothalamus, and the medial
and central amygdala. Moderate binding in the lateral globus
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Figure 3.

Autoradiograms of V1aR binding in S. teguina (A-E) and in representative sections from S. xerampelinus without (F-J) and with (K-O) fiber tract
binding. Arrowheads indicate lateral septum (LS), indusium griseum (IG), ventral pallidum (VP), corpus callosum (cc), and anterior commissure
(ac) in A,F,K; anterior hypothalamus (AH), ventral anterior thalamus (VAt), anterior thalamus (At), lateral globus pallidus (LGP), internal capsule
(ic), and ventral hippocampal commissure (vhc) in B,G,L; zona incerta (Zl), ventrolateral (VLt), mediodorsal (MDt), laterodorsal (LDt), ventro-
posterior (VPt), and submedius (Smt) thalamic nuclei in C,H,M; dorsal lateral geniculate (DLG) and supramammillary nucleus (SuM) in D,I,N;
periaqueductal gray (PAG), medial geniculate (MG), and cc in E,J,O. Binding in MD and LD thalamus was polymorphic in both species: C is
representative of S. teguina without binding in either structure, H and M are representative of S. xerampelinus with binding in both structures.
Scale bar = 1 mm.
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Autoradiograms of OTR binding in S. teguina (A-D) and S. xerampelinus (E-H). Arrowheads indicate dorsal endopiriform nucleus (DEn) and
prefrontal cortex (PfC) in AE; lateral septum (LS) and nucleus accumbens shell (NAsh) in B,F; hippocampus (Hipp), ventromedial hypothalamus
(VMH), central (CeA), and medial (MeA) amygdala in C,G; dentate gyrus (DG), and CA1, CA2, and CA3 hippocampal fields in D,H. Scale bar =

1 mm.

pallidus was also detected in both species (Fig. 3B,G,L); ViaR
expression in this structure has not been reported previously
in any rodent (reviewed in Beery et al., 2008, table 3). Binding
was minimal or lacking in the hippocampus (data not shown),
nucleus accumbens, medial preoptic area, and the accessory
olfactory bulb. Binding in the forebrain tended to be higher in
S. teguina, with significant differences in the anterior hypo-

thalamus (F(1,33) = 17.8, P = 0.0002; Figs. 3B,G,L, 5) and the
ventral portion of the bed nucleus of stria terminalis (BNST;
F,35 = 17.2, P = 0.0002), and a trend toward higher binding
in the medial and lateral BNST (F; 35, = 3.5, P = 0.07). Binding
in the ventral pallidum was strong in both species, with a trend
toward higher receptor density in S. teguina (F(; 36y = 5.2, P =
0.03; Fig. 3A,F,K). A similar trend was observed in the main
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TABLE 1. '?%|-linear-Vasopressin Specific Binding in Singing Mice (Mean +
SD dpm/mg Tissue Equivalent)

Brain region S. teguina S. xerampelinus P
Main olfactory bulb 1638 + 1174 648 + 1246 0.04
Accessory olfactory bulb 151 + 249 68 = 164 0.29
Ventral pallidum 7459 + 3685(" 5354 + 1991 0.03
Lateral septum 6941 + 2935 5607 = 1879 0.09
Medial+lateral BNST 1419 = 565 1027 = 671 0.07
Ventral BNST 6476 = 2420" 3865 + 2420 0.0002
Lateral globus pallidus 3984 + 2450 3011 + 1430 0.15
Indusium griseum 5926 + 2437" 57 =105 < 0.0001
Medial amygdala 4142 + 2045 3299 + 2145 0.23
Central amygdala 2325 = 977 1935 + 1373 0.36
Anterior hypothalamus 5331 x 2517" 2470 = 1425 0.0002
Lateral hypothalamus 3314 + 1465 3583 + 1812 0.64
Paraventricular hypothalamus 4119 + 2345 3402 + 1289 0.2
Supraoptic nucleus 4932 + 2984 5292 + 2455 0.8
Supramammillary nucleus 3898 + 1562 7174 + 2589" 0.0006
Anterior thalamus 38 = 89 7858 = 2977" < 0.0001
Central medial thalamus 8562 + 3889 9356 + 2355 0.45
Reuniens (Thal) 3534 + 2192 2327 £ 1670 0.07
Submedius (Thal) 8461 = 39817 4960 + 1937 0.002
Zona incerta (Thal) 1854 + 1061 4051 = 1519" < 0.0001
Mediodorsal thalamus 974 + 1648 2182 = 1696(") 0.03
Laterodorsal thalamus 1188 = 1928 3987 + 4071" 0.02
Ventral anterior thalamus 2051 + 3507 7075 + 2879' < 0.0001
Ventrolateral thalamus 8049 + 3034 6202 + 2837 0.06
Ventroposterior thalamus 174 = 300 2392 + 2014" 0.0001
Dorsal lateral geniculate 269 + 322 3051 = 2472" 0.0002
Medial geniculate 8231 + 4868 5866 + 2727 0.06
Periaqueductal gray 4639 =+ 2701" 2145 + 925 0.0003
Total brain? 3931 3866 0.9

1Significantly higher binding in species indicated.
Not significant after correction for multiple comparisons, a = 0.022.
2Calculated as the mean of specific binding across all structures.

TABLE 2. '25-Ornithine Vasotocin Specific Binding in Singing Mice
(Mean = SD dpm/mg Tissue Equivalent)

Brain region S. teguina S. xerampelinus P
Prefrontal cortex 510 = 245" 303 =119 0.002
Lateral septum 1137 £ 673 1504 + 542 0.06
Caudate 65 = 82 81 =45 0.37
Nucleus accumbens core 94 + 106 157 = 150 0.17
Nucleus accumbens shell 151 + 384 497 = 384! 0.002
Medial+lateral BNST 1128 = 598 1372 £ 499 0.19
Medial amygdala 529 + 296 1344 + 73172 < 0.0001
Central amygdala 1200 + 559 2382 + 842" < 0.0001
Medial preoptic area 817 + 403 841 + 439 0.98
Ventromedial hypothalamus 683 + 593 830 + 472 0.37
Dorsal endopiriform nucleus 1666 = 735 1864 = 920 0.48
Hippocampus CA1 24 + 36 2776 + 12642 < 0.0001
Hippocampus CA2 16 £ 23 623 =+ 353" < 0.0001
Hippocampus CA3 114 £ 73 1652 + 1202’ < 0.0001
Hippocampus dentate gyrus 681 + 250 1649 + 768" < 0.0001
Total brain® 627 1189’ 0.01

1Significantly higher binding in species indicated, « = 0.03.
2Significantly higher binding in males.
3Calculated as the mean of specific binding across all structures.

olfactory bulb, albeit with lower binding in both species
(Fi1,26) = 4.9, P = 0.04). Binding in the indusium grisium was
highly concentrated in S. teguina and entirely lacking in S.
xerampelinus (F 4 36y = 128.6, P < 0.0001; Fig. 3A,F,K). In the
thalamus, the submedius nucleus was the only structure with
significantly higher binding in S. teguina (F(; 33 = 11.4, P =
0.002; Fig. 3C,H,M). There were, however, trends toward
higher binding in S. teguina in the reuniens (F(; 35 = 3.6, P =
0.07) and ventrolateral (F 35y = 3.7, P = 0.06; Fig. 3C,H,M)
nuclei, and in the medial geniculate (F(; 34y = 3.5, P = 0.07;
Figs. 3E,J,0, 5). Binding in the lateral and dorsolateral periag-
ueductal gray (PAG) was present in both species, but signifi-
cantly higher in S. teguina (F4 340 = 16.1, P = 0.0003; Figs.
3E,J,0, 5).
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Figure 5.

V1aR binding in singing mice in structures implicated in vocal produc-
tion and perception. (A) Binding in anterior hypothalamus (AH) and (B)
periaqueductal gray (PAG) was significantly higher in S. teguina (light
gray), with a trend in the same direction in (C) medial geniculate (MG).
Asterisks denote significant comparisons; see Table 1 for P-values;
bars represent standard error; dpm, decompositions per minute; TE,
tissue equivalent.

Structures with significantly higher '2%I-linear-AVP binding
in S. xerampelinus were strongly localized to the thalamus
(Fig. 3B-E,G-J,L-0). Most strikingly, this species was charac-
terized by highly concentrated AVP binding in the anterior
thalamus, a distribution completely lacking in S. teguina
(Fia,35 = 95.5, P < 0.0001; Figs. 3B,G,L, 6). Thalamic binding
was also stronger in S. xerampelinus in the zona incerta (ZI),
the ventral anterior (VA) and ventroposterior (VP) nuclei, and in
the dorsal lateral geniculate (DLG) (ZI: F(; 34 = 22.3, P <
0.0001; VA: F(4 35 = 22.5, P < 0.0001; VP: F(4 37y = 19.0, P =
0.0001; DLG: F(; 34 = 17.4, P = 0.0002). Likewise, binding in
the laterodorsal (LD) thalamus was significantly higher in S.
xerampelinus (F4 37 = 6.5, P = 0.02), with a trend in the same
direction in mediodorsal (MD) thalamus (F; 57y = 4.9, P = 0.03;
Figs. 3C,H,M, 6). However, binding in these structures was
highly variable in both species: 10 S. teguina (63%; six fe-
males, four males) and one male S. xerampelinus (4%) com-
pletely lacked binding in the laterodorsal nucleus. Seven S.
teguina (44%; three females, four males) and one female S.
xerampelinus (4%) completely lacked binding in the me-
diodorsal nucleus. Four individuals, all S. teguina, lacked
binding in both structures. Across species, there was a sig-
nificant positive relationship between strength of binding in
both structures (correlation = 0.62, Z = 4.4, P < 0.0001).
When comparisons were restricted to individuals with binding
there was no difference between species (LD: F; 55, = 0.5; P =
0.5; MD: F; o) = 1.6; P = 0.2).

The supramammillary nucleus was the only extrathalamic
structure in which binding was significantly higher in S. xer-
ampelinus (F4 30 = 14.7, P = 0.006; Fig. 3D, I, N; Fig. 6).
However, '2°|-linear-AVP binding was pervasive in the fiber
tracts of 18 S. xerampelinus (78%; 12 females, 6 males). In
these individuals, binding was detected in all regions contain-
ing compacted nerve bundles, including the corpus callosum,
anterior commissure, fornix, optic tract, and fascicles in the
caudate (Figs. 2B, 3K-0). Fiber tract binding was undetect-
able in all S. teguina and in two female and three male S.
xerampelinus. Species differences, measured in the corpus
callosum at the levels of the nucleus accumbens (cc1) and
medial geniculate (cc2), were highly significant (cc1: F(; 35 =
241, P < 0.0001; cc2: F(; 50 = 15.7, P = 0.0004).
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Figure 7.

OTR binding in singing mice in structures implicated in maternal
behaviors. (A) Binding in nucleus accumbens shell (NAsh) and (B)
central amygdala (CeA) was significantly higher in S. xerampelinus
(dark gray). Asterisks denote significant comparisons; see Table 2 for
P-values; bars represent standard error; dpm, decompositions per
minute; TE, tissue equivalent.

OT receptor autoradiography

Total brain '2%]-OVT binding was significantly higher in S.
xerampelinus (F 15 = 8.8, P = 0.01), but both species were
characterized by high binding in the medial and lateral com-
partments of the BNST, the dorsal endopiriform nucleus, and
the lateral septum, with a trend toward higher binding in S.
xerampelinus in the septum (F 5,y = 3.8, P = 0.06; Table 2;
Fig. 4). Binding was moderate in both species in the medial
preoptic area and ventromedial hypothalamus, and low in the
caudate and nucleus accumbens core. The prefrontal cortex
was the only region in which binding was significantly higher
in S. teguina (F 4 59y = 12.2, P = 0.002; Fig. 4A,E).

In S. xerampelinus, '2°I-OVT binding was significantly
higher in the nucleus accumbens shell (F; 55 = 10.9, P =
0.002; Figs. 4F, 7), and in the amygdala in both central (CeA)
and medial (MeA) nuclei (CeA: F, 33 = 24.7, P < 0.0001; MeA:
Fa,30) = 21.3; P < 0.0001; Figs. 4B,C,F,G, 6, 7). In the medial
amygdala, an interaction between species and sex (F(; 3) =
5.2; P = 0.03) was driven by strong sexual dimorphism within
S. xerampelinus, with significantly higher binding in males
(Fisher’s PLSD: P = 0.0007; Fig. 6). Hippocampal binding in S.
teguina was minimal or absent in CA1-3 and moderate in the

Figure 6.

ViaR (A-D) and OTR (E-F) binding in singing mice in structures
implicated in social and spatial memory. Binding in anterior thalamus
(Ant Thal), supramammillary nucleus (SuM), laterodorsal thalamus (LD
Thal), medial amygdala (MeA), and CA1 was significantly higher in S.
xerampelinus (dark gray), with a trend in the same direction in me-
diodorsal thalamus (MD Thal). Note that some individuals completely
lacked V1aR binding in MD and/or LD thalamus; species differences in
both structures are due to the higher frequency of binding in S.
xerampelinus. Within S. xerampelinus, OTR binding in MeA and CA1
was significantly higher in males. Asterisks denote significant inter-
specific comparisons; see Tables 1 and 2 for P-values; Greek letters in
E (MeA) and F (CA1) denote significant sex differences in S. xerampeli-
nus (B, y) but not in S. teguina (a, «); bars represent standard error;
dpm, decompositions per minute; TE, tissue equivalent; f, females; m,
males.

Research in Systems Neuroscience

329

dentate gyrus. Binding was contrastingly high in S. xerampeli-
nus throughout the hippocampus, particularly in CA1 (CA1:
F,33 = 90.4; CA2: Fy 34y = 50.3; CA3: Fq 34y = 27.5; DG:
F1,34 = 27.2; all, P < 0.0001; Fig. 4D,H). Within S. xerampeli-
nus, binding in CA1 was significantly higher in males (Fisher’s
PLSD: P = 0.03; Fig. 6).

DISCUSSION

Comparison of the neural distributions of V1aR and OTR in
two species of Central American rodents, Scotinomys teguina
and S. xerampelinus, revealed a large number of interspecific
differences in brain regions implicated in multiple aspects of
social behavior, including communication and sensory pro-
cessing, emotion and memory, and maternal care. Although
divergence in ViaR and OTR distributions is common in ro-
dents, several species differences in singing mice were par-
ticularly striking. These included higher V1aR binding in S.
teguina in regions of the forebrain, contrasting with signifi-
cantly greater concentrations of V1a receptors in S. xer-
ampelinus in most thalamic structures, and higher OTR bind-
ing in S. xerampelinus throughout the brain. We discuss
potential roles of AVP and OT in these interconnected circuits
in relation to the unique ecologies of singing mice.

Another novel and unexpected finding was the V1aR fiber
tract binding present in most S. xerampelinus brains. While we
do not know whether these receptor populations are func-
tional or effectively neutral, the absence of binding in controls
(Fig. 2D), and the fact that some individuals lack fiber tract
binding altogether (Fig. 3F-J), demonstrate that this result is
not an artifact of nonspecific ligand binding. Although it is not
unusual for receptors to be expressed in both neurons and
glia (e.g., Nouel et al., 1997; Yu et al., 2008), this type of
distribution has never been described for vasopressin recep-
tors. Our current data could be interpreted either as glial
expression of V1aR, or as localization of neuronal V1aR in
axons. Localizing fiber tract receptor populations at the cel-
lular level will be an important first step to exploring their
function.

V1aR and OTR distributions in vocal-acoustic
circuitry in singing mice

Regulation of acoustic circuitry is one of the most broadly
distributed functions of vasopressin-related neuropeptides;
despite multiple independent origins of vocalization in the
vertebrate lineage, major nodes in the vocal-motor compo-
nent of this circuit are homologous across birds, fishes, and
mammals (Goodson and Bass, 2001). For example, OTR-like
binding is present in several nuclei in the avian song system
(Maney et al., 1997), and intraventricular AVT induces song in
white-crowned sparrows (Leung et al., 2009). Injection of AVT
or IT into the preoptic-anterior hypothalamic region (POA-AH)
in the plainfin midshipman, a teleost fish, influences vocal
production in a sex-specific manner (Goodson and Bass,
2000), while injection of oxytocin into the medial POA-AH
induces mating-related vocalizations in female hamsters
(Floody et al., 1998). Likewise, electrical stimulation of either
the PAG or POA-AH evokes vocalizations in both fish and
primates (Jirgens, 1994; Goodson and Bass, 2002). While the
putative roles of vasopressin and oxytocin in mammalian au-
ditory processing are undefined, work in teleost fish suggests
that ancestral forms of these neuropeptides participate in the
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integration of auditory input in midbrain and thalamic nuclei
that are homologous to higher-order auditory nuclei in mam-
mals (Goodson and Bass, 2002).

Given this evidence for the convergent recruitment of vaso-
pressinergic neuropeptides to vocal-acoustic circuitry, we
were interested in defining vasopressin 1a and oxytocin re-
ceptor expression patterns in singing mice. Although both
species share a highly derived form of vocal communication,
S. teguina has longer songs and sings more often (Miller and
Engstrom, 2007; P. Campbell and S.M. Phelps, unpubl.). Sur-
prisingly, neither species exhibited detectable V1aR binding in
the medial preoptic area (MPOA), and OTR binding in this
region was moderate in both. However, we found concen-
trated V1aR expression in two reciprocally connected struc-
tures implicated in vocal production, PAG and AH. In both
structures, receptor density was significantly higher in S. teg-
uina. Similarly, both species had strong expression in the
auditory thalamus (medial geniculate nucleus), with a trend
toward higher binding in S. teguina (Fig. 5).

In mammals, vocalization is one of an array of behavioral
responses associated with PAG (e.g., lordosis in rodents and
defensive rage in cats; reviewed in Behbehani, 1995; Jirgens,
2002). Likewise, AH is integral to male partner preference in
ferrets (Paredes and Baum, 1995) and the action of AVP in AH
is not exclusive to vocal production (e.g., Ferris et al., 1997;
Albers et al., 2006). We also note that high V1aR binding in the
medial geniculate is found in prairie voles (Insel et al., 1994;
Wang et al., 1997), a species in which adult vocal communi-
cation is undocumented. Nevertheless, higher V1a receptor
density in S. teguina in both vocal and auditory structures is
noteworthy in light of species differences in vocal behavior.
Although we think it unlikely that the action of AVP in AH and
PAG is exclusive to vocal modulation in singing mice, strong
receptor binding in both species and higher binding in the
more vocal species suggest that this neuropeptide plays a
functional role in the regulation of species-specific vocal be-
havior.

Recent documentation of adult vocal behavior in other gen-
era in the family Sigmodontinae, including several species of
Peromyscus (Wright and Brown, 2004; Kalcounis-Rueppell et
al., 2006; Miller and Engstrom, 2007), invites more compre-
hensive comparative analysis of the relation between vocal
communication and vasopressin and oxytocin receptor distri-
butions in sigmodontine mice. Earlier studies of receptor bind-
ing in Peromyscus maniculatus and P. californicus focused on
species differences in social mating system (Insel et al., 1991),
paternal behavior and aggression (Bester-Meredith et al.,
1999), and did not examine regions relevant to vocalization.

In the more distantly related laboratory mouse (Mus), ViaR
is expressed in both AH and PAG, albeit at moderate levels
(Dubois-Dauphin et al., 1996). It remains to be determined
whether AVP in these regions is involved in the vocal behavior
of adult males (e.g., Holy and Guo, 2005). Likewise, the finding
that oxytocin knockout mouse pups vocalize less than wild-
type controls when separated from their dam has been inter-
preted as a byproduct of reduced sensitivity to social isolation
(Winslow et al., 2000; Winslow and Insel, 2002). It is possible,
however, that neural oxytocin in vocalization-related regions
such as MPOA plays a more specific role in the modulation of
vocal production in Mus.
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V1aR and OTR distributions in sociospatial
circuitry in singing mice

The most striking species differences in receptor distribu-
tions were localized to spatial memory circuits; these patterns
were paralleled by significant differences in receptor densities
in circuitry critical to social recognition. Across these circuits,
receptor binding was higher in S. xerampelinus (Fig. 6). Most
notably, OTR binding in the hippocampus was minimal or
lacking in S. teguina and contrastingly high in S. xerampelinus
and V1aR binding in the anterior thalamus was present only in
S. xerampelinus. Both brain regions are integral to the acqui-
sition and consolidation of spatial memory and are recipro-
cally connected (Swanson and Cowan, 1977; Sikes and Vogt,
1987; Aggleton and Brown, 1999). V1aR binding was also
significantly higher in S. xerampelinus in the supramammillary
nucleus, which projects to the hippocampus and is directly
involved in spatial working memory (Vertes and McKenna,
2000; Aranda et al., 2008). Although V1aR in laterodorsal and
mediodorsal thalamus was variable in both species, binding in
these regions was observed more frequently in S. xerampeli-
nus. While LD and MD thalamus are implicated in a range of
limbic functions, lesions to the LD nucleus cause spatial mem-
ory deficits in rats (van Groen et al., 2002) and damage to
either nucleus contributes to amnesia in humans (Edelstyn et
al., 2006; Cipolotti et al., 2008). Finally, although both species
were characterized by strong OTR expression in the medial
amygdala, binding was significantly higher in S. xerampelinus.
While the MeA receives major input from the accessory olfac-
tory bulb, it is also reciprocally connected with CA1 field in the
hippocampus; it has been proposed that this bidirectional
connection influences emotional learning (Petrovich et al.,
2001; Kishi et al., 2006). Intriguingly, sex differences in OTR
binding were detected in S. xerampelinus in both MeA and
CA1 (Fig. 6), a pattern suggestive of a common oxytocin-
modulated function.

Data from other rodent species support mnemonic func-
tions for oxytocin and vasopressin in many of the above brain
regions. In laboratory mice, OTR is highly expressed in both
MeA and hippocampus (CA3 field; Ferguson et al., 2000):
oxytocin knockout males exhibit normal spatial memory but
fail to recognize familiar individuals and oxytocin injected into
MeA restores social memory (Ferguson et al., 2001). Social
recognition is similarly impaired in females with short-term
silencing of MeA OT receptors (Choleris et al., 2007). Interest-
ingly, targeted knockout of hippocampal OTR also impairs
social recognition (Lee et al., 2008). Primiparous rats and mice
exhibit enhanced hippocampus-dependent spatial memory
(reviewed in Kinsley and Lambert, 2008), and experimental
evidence demonstrates that oxytocin is critically involved in
this phenomenon (Tomizawa et al., 2003). In male rats, injec-
tion of anti-oxytocin serum into ventral hippocampus inhibits
social memory (van Wimersma Greidanus and Maigret, 1996)
and AVP administration in dorsal hippocampus enhances
spatial memory consolidation (Paban et al., 2003). Finally,
variable V1aR expression in LD thalamus in male prairie voles
has led to the suggestion that vasopressin in this structure
modulates spatial representation of antagonistic social en-
counters (Ophir et al., 2008).

Social and spatial memory are typically studied in discrete
behavioral paradigms. However, the neuroanatomical and ex-
perimental data summarized above, together with the results
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of the present study, suggest that vasopressin and oxytocin
facilitate the synthesis of these two types of memory. From a
functional perspective, the ability to embed social memory in
a spatial context is likely to be favored by selection under a
range of social and ecological conditions. Lower population
densities, greater conspecific spacing, and longer parental
care in S. xerampelinus relative to S. teguina indicate that
spatial orientation in relation to resources, nest sites, mates,
and neighbors may be particularly important in this species.
Higher ViaR and OTR expression in relevant mnemonic cir-
cuits in S. xerampelinus suggests a neural mechanism for
enhanced sociospatial memory.

OTR in the maternal brain

Central oxytocin is a key modulator of mammalian maternal
behaviors (Pedersen, 1997; Meaney, 2001). Because lower
ambient temperatures and slower pup development at higher
altitudes presumably require greater maternal investment
from S. xerampelinus females, we looked for species differ-
ences in OTR expression in brain regions subserving maternal
behavior. We found higher OTR binding in S. xerampelinus in
two such structures: the central amygdala and the shell of the
nucleus accumbens (Fig. 7). In rats, maternal responsiveness
in virgin females and maternal aggression toward intruders
are positively correlated with CeA OTR binding and OT levels,
respectively (Champagne et al., 2001; Bosch et al., 2005).
Likewise, individual variation in spontaneous maternal behav-
ior in naive prairie voles is strongly associated with OTR
density in the Nacc shell, and OT antagonist injected into this
region disrupts maternal behavior (Olazdbal and Young,
2006a,b). We speculate that ecological selection has shaped
the neural substrates of maternal investment in S. xerampeli-
nus, favoring greater responsiveness to pups and aggression
toward potential predators. We note, however, that species
differences were not observed in the lateral septum, BNST,
and medial preoptic area, all of which are implicated in
oxytocin-mediated maternal behaviors in other rodent species
(Pedersen et al., 1994; Champagne et al., 2001; Olazabal and
Young, 2006b).

Conclusions and perspectives

The comparative data presented here contribute to a rec-
ognized need to understand the neural correlates of social
behavior from an evolutionary and ecological perspective
(Goodson, 2005; Pollen et al., 2007). Until recently, compara-
tive studies of V1aR and OTR in rodents focused mainly on the
relation between receptor distributions and social mating sys-
tem (Insel and Shapiro, 1992; Insel et al., 1994; Wang et al.,
1997; but see Beery et al., 2008). However, as more species
comparisons are added, consistent correlations between ex-
pression patterns and mating system break down, revealing
that receptor distributions are not a blueprint for social struc-
ture, but rather a sample from a potentially large variety of
neural phenotypes subserving species-typical social behav-
iors. For example, although elevated V1aR expression in the
ventral pallidum is strongly associated with social monogamy
in voles (Insel et al., 1994), significant pallidal V1aR is also
found in nonmonogamous rodents, including both species of
singing mice, a solitary species of tucu-tuco (Beery et al.,
2008), and the polygynous laboratory mouse (Dubois-Dauphin
et al., 1996). Although the V1aR-mediated action of AVP in the
ventral pallidum is essential to pair bond formation in male
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prairie voles (Lim and Young, 2004), it may regulate social
affect in ways that serve different functions in other taxa.
Similarly, the role of the lateral septum in prairie vole pair-
bonding can be contrasted with the broad conservation of
aggression-related functions of septal AVP/AVT in both mam-
mals and birds (Wang et al., 1994; Everts et al., 1997; Good-
son, 1998; Goodson and Adkins-Regan, 1999; Bester-
Meredith et al., 1999; Beiderbeck et al., 2007). These patterns
are concordant with the concept of a vertebrate “social be-
havior network” in which general conservation of function is
fine-tuned in the context of species-specific selective pres-
sures (Newman, 1999; Goodson, 2005).

Based on the unique vocal behavior of S. teguina and S.
xerampelinus, and species differences in ecology, we propose
that V1aR and OTR distributions in singing mice support an
integral role for the AVP/OT system in three aspects of soci-
ality: vocal communication, sociospatial memory, and, to a
lesser degree, maternal care and aggression. While testing
these hypotheses awaits experimental manipulation, the
emergent patterns of conservation and diversity for V1aR and
OTR neural phenotypes in singing mice contribute to a
broader view of the neural substrates of rodent sociality.
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